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A B S T R A C T

Brain age is an estimate of chronological age obtained from T1-weighted magnetic resonance images (T1w
MRI), representing a straightforward diagnostic biomarker of brain aging and associated diseases. While the
current best accuracy of brain age predictions on T1w MRIs of healthy subjects ranges from two to three
years, comparing results across studies is challenging due to differences in the datasets, T1w preprocessing
pipelines, and evaluation protocols used. This paper investigates the impact of T1w image preprocessing on
the performance of four deep learning brain age models from recent literature. Four preprocessing pipelines,
which differed in terms of registration transform, grayscale correction, and software implementation, were
evaluated. The results showed that the choice of software or preprocessing steps could significantly affect
the prediction error, with a maximum increase of 0.75 years in mean absolute error (MAE) for the same
model and dataset. While grayscale correction had no significant impact on MAE, using affine rather than
rigid registration to brain atlas statistically significantly improved MAE. Models trained on 3D images with
isotropic 1 mm3 resolution exhibited less sensitivity to the T1w preprocessing variations compared to 2D models
or those trained on downsampled 3D images. Our findings indicate that extensive T1w preprocessing improves
MAE, especially when predicting on a new dataset. This runs counter to prevailing research literature, which
suggests that models trained on minimally preprocessed T1w scans are better suited for age predictions on
MRIs from unseen scanners. We demonstrate that, irrespective of the model or T1w preprocessing used during
training, applying some form of offset correction is essential to enable the model’s performance to generalize
effectively on datasets from unseen sites, regardless of whether they have undergone the same or different
T1w preprocessing as the training set.
1. Introduction

Brain age, a neurological biomarker of individual brain health [1],
has emerged as a pivotal measure of biological aging over the last
decade. By measuring the discrepancy between brain age and chrono-
logical age, premature brain aging has been demonstrated in neuro-
logical diseases and disorders such as Alzheimer’s dementia [2], Mul-
tiple Sclerosis [3,4], and other diseases,including Type 2 Diabetes [5],
and Human Immunodeficiency Virus (HIV) infection [6,7]. Brain age
may deviate from chronological age even for healthy individuals, with
research indicating its association with various environmental and
lifestyle factors such as tobacco and alcohol consumption [5,8–10].
Evaluating the age gap therefore represents an evolving diagnostic
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biomarker, opening an avenue for researchers to uncover patterns and
heterogeneity in the aging process.

Deep learning (DL) methods, particularly convolutional neural net-
works (CNNs), have revolutionized the training of brain age algorithms
by enabling direct processing of medical images, circumventing the
need for prior feature extraction. These algorithms have been effec-
tively employed across various neuroimaging modalities, with the ma-
jority involving T1-weighted (T1w) magnetic resonance imaging (MRI),
while T2-weighted [10–12], T2-FLAIR [10], diffusion tensor imaging
(DTI) [13,14], functional MRI [10,11,15], and PET [16] have also been
used. Due to a large number of publicly available T1w brain MRI
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datasets, this study focused on the impact of T1w MRI preprocessing
on the performance of brain age regression models.

The shift towards deep learning in this field marks a significant
departure from earlier traditional machine learning models, enhancing
the precision of brain age models. However, due to differences in
T1w MRI preprocessing pipelines and software implementations, it is
difficult to disentangle the contribution of methodological innovations
from the impact of the T1w preprocessing. The preprocessing pipelines
used in brain age studies generally include gray scale enhancement,
such as bias field corrections [17–20], and registration to a brain atlas.
Degrees of freedom in registration of T1w to atlas space also varies from
rigid [21,22] to general linear (affine) [17–20,23,24] or even nonlinear
transforms [18,25,26]. Skull stripping that involves extracting the brain
from surrounding tissues was also applied in certain studies [17,19,
20,25–27]. A comprehensive study on natural images found that the
effect of image preprocessing and augmentation on the performance of
regression models was greater than the effects of variability in model
architecture [28], highlighting the need to analyze the effect of T1w
preprocessing approach for achieving best accuracy and reproducibility
of brain age prediction models.

Besides training on the T1w MRIs, brain age models are often
trained on Gray Matter (GM) and White Matter (WM) segmentation
maps. Studies show that models trained on the former far outper-
form models trained on the latter [18,22], with reports of models
trained on GM even outperforming models trained on preprocessed
T1w MRIs [19,29]. However, related neuroimaging studies show that
measurements of cortical surface thickness differ significantly depend-
ing on the pipeline applied [30,31] and reveal a significant discrepancy
in cortical thickness reproducibility metrics [32]. Reasons could also in-
clude T1w MRI resolution variations and contrast-to-noise differences.
It seems that using GM segmentation for brain age predictions is rather
ill-posed and, therefore, this study will focus on preprocessed T1w
images as model input. However, differences in T1w preprocessing may
also arise from the use of different software implementations [27]. It
is yet to be determined if there is a significant effect of the software
implementations on brain age prediction, even for a fairly simple T1w
preprocessing approaches.

For clinical application, it is crucial to validate brain age prediction
models on datasets from new, previously unseen sites that were not
used during model training. Such scenario simulates the real-world
application of applying a pretrained model to new data, which may
have undergone different preprocessing. While Feng et al. [20] reported
a rather small increase in Mean Absolute Error (MAE) of 0.15 years,
multiple other deep learning studies have shown a larger deteriora-
tion in accuracy, with increases in MAE ranging from one to five
years [21,27,33]. Interestingly, even when the same pretrained model
and preprocessing method were used, the deterioration in accuracy
on different new sites could vary substantially [21,33]. This suggests
that the observed increase in error is more likely due to the unique
characteristics of the new dataset and/or its preprocessing, rather than
a lack of generalizability in the model itself.

To address the aforementioned challenges and uncertainties in the
field of brain age prediction, particularly the varying impact of T1w
MRI preprocessing, software implementations, and the generalizabil-
ity of models across diverse datasets, this study aims to provide a
systematic and detailed analysis with the following contributions:

(i) A thorough and reproducible quantitative evaluation of the im-
pact of four different T1w preprocessing pipelines on the accu-
racy of brain age prediction. These pipelines differ in the level
of preprocessing and the software tools employed.

(ii) A rigorous statistical evaluation involving repeated model train-
ing with random initialization and use of linear mixed-effects
models (LMEMs), encompassing the study of the impact of vari-
ous confounding factors.

(iii) Study of model performance generalization on an unseen site
dataset and/or new T1w preprocessing pipeline and software
implementation.
2
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2. Materials and methods

2.1. Datasets

For studying the effect of image preprocessing on brain age pre-
diction, we created two datasets: (i) a multi-site dataset for training,
validation and testing and (ii) a new unseen site dataset used solely
for testing. All included subjects were healthy individuals, without
previously known neurological diseases, from 18 to 95 years old.

The multi-site dataset comprises T1 W MRIs, gathered from seven
publicly available datasets, totaling 4428 T1w MRIs of healthy subjects.
Most datasets within this collection sourced images from multiple
hospitals or sites, utilizing an array of MRI scanners, including those
from vendors GE, Siemens, and Philips, operating at 1.5T and 3T field
strengths. Exceptions are the OASIS 2 and CamCAN datasets, in which
all scans were acquired on a single scanner. Due to the integration of
these multi-source, multi-site, and multi-vendor datasets, variations in
acquisition protocols are inherently present.

The T1w images scans in the multi-site dataset were preprocessed
using four different preprocessing pipelines, described in Section 2.2,
and underwent a visual quality control. Images that did not pass the
visual quality control for reasons like motion artifacts, failed prepro-
cessing, etc., were excluded (𝑁𝑒𝑥𝑐𝑙 = 408). Furthermore, subjects under
the age of 18 or with missing age information were discarded (𝑁𝑑𝑖𝑠𝑐 =
481) and, in case multiple scans per subject were available, a single scan
(chronologically the first non-discarded image) was retained. Finally
accepted were a total of 2504 T1w MRIs, which were split into train
(𝑁 = 2012), validation (𝑁 = 245) and test (𝑁 = 247) datasets. The
descriptive statistics per dataset are given in Supplementary Table 4.
For reproducibility reasons, the exact subject IDs included in each split
are provided on our code repository.

The unseen site dataset was a subset of the UK Biobank (UKB)
dataset and included 1493 T1w MRI scans of healthy subjects. All
included subjects met the inclusion criteria of not having long-standing
illnesses and were required to self-report an overall health rating of
excellent or good at the time of scan acquisition. The raw defaced T1w
MRIs were preprocessed using the same four preprocessing pipelines as
the multi-site dataset, and all scans passed the visual quality control.
In addition, a fifth preprocessing pipeline was already applied to the
dataset by the UKB dataset providers.

The ground truth brain age corresponds to the subject’s chronolog-
ical age, which was either given by the dataset providers or calculated
from the provided date of birth and the MRI acquisition date. For the
majority of datasets, including ADNI, CamCAN, CC-359, OASIS 2, and
FCON 1000, the age was provided as a rounded figure to the nearest
year. The age distribution of the included T1w subject scans per dataset,
and the train/validation/test subsets, is provided in Supplementary
Materials (Table 4, Fig. 7).

2.2. Image preprocessing pipelines

We implemented four preprocessing pipelines using a combination
of publicly available and in-house developed software. These pipelines
vary with respect to the spatial transform applied in the registration
to atlas space, the extent of gray scale corrections, as well as the
algorithm and software implementations used. For clarity, a schematic
representation of the four pipelines is illustrated in Fig. 1.

Common to all four pipelines, the input T1w image was first con-
verted to the Nifti format. In the first three pipelines, the input raw
T1w image was initially denoised using Adaptive non-local means
denoising2 with spatially varying noise levels [34].

2 Adaptive non-local means denoising implementation: https://github.com/
jkwon/naonlm3d.

https://github.com/djkwon/naonlm3d
https://github.com/djkwon/naonlm3d
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Fig. 1. Schematic representation of preprocessing pipelines and software used.
Aligned with Cole et al. [22], the first pipeline, denoted RIG, per-
formed rigid registration of the denoised T1w image into the MNI152
nonlinear atlas, version 2009c [35] (7th generation), with size 193
× 229 × 193 and spacing 1 mm3. To improve registration accuracy,
intensity inhomogeneity correction (without mask) was applied to the
denoised image using N4 algorithm3 [36], prior to running the reg-
istration. The inhomogeneity corrected T1w image was used during
registration only, while, finally, the denoised T1w image was sinc
resampled using the obtained rigid transformation.

The second pipeline, RIG+GS, extended the RIG pipeline by apply-
ing an additional two-step grayscale correction procedure to the RIG
output. The first step, (1) intensity windowing, involves computation
of the lower and upper thresholds based on the grayscale histogram,
smoothed with a Gaussian filter. The lower threshold is set based on
histogram’s lowest intensity mode location plus twice the value of the
mode’s full width at half maximum (FWHM). Note that the particular
mode corresponds to the grayscale values of the background and non-
tissue regions of the T1w MRI image. To compute the upper threshold,
the grayscale values beyond the 99th percentile are first set to the value
of the lower threshold. Inflection points in the intensity distribution
from the 50th to the 95th percentiles are then identified by evaluating
the second derivative. The upper threshold is defined as the value
of the percentile at a selected inflection point, plus three times the
Median Absolute Deviation of the pixel intensities that are above the
lower threshold. The second step, (2) involves intensity inhomogeneity
correction, utilizing the N4 algorithm with the MNI152 atlas mask
dilated by 3 voxels.

The third pipeline, AFF+GS, was a modified version of the RIG+GS,
by applying in sequence the rigid and affine registration steps. Finally,
the two-step grayscale correction procedure was applied as in the
RIG+GS pipeline. All previously mentioned image registration and
resampling steps for processing pipelines RIG, RIG+GS and AFF+GS
were performed using the publicly available NiftyReg software4 [37].

The fourth pipeline, Fs+FSL, utilized commonly used software tools
FreeSurfer5 and FSL (FMRIB Software Library)6 [38] and included

3 N4 bias field correction: https://manpages.debian.org/testing/ants/
N4BiasFieldCorrection.1.en.html.

4 NiftyReg Software http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg.
5 Freesurfer: https://surfer.nmr.mgh.harvard.edu/.
6 FSL (FMRIB Software Library): https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
3

gray scale corrections and affine registration. Raw T1w images were
preprocessed using the grayscale correction preprocessing stages of
FreeSurfer’s cortical reconstruction recon-all pipeline, with de-
fault parameter settings. The preprocessing entails non-parametric
non-uniform intensity normalization (N3), followed by intensity nor-
malization that sets the mean intensity of the white matter to 110 [39].
In order to ensure consistency among all preprocessing pipelines,
we also applied registration to the MNI152 nonlinear atlas, version
2009c [35], the same reference space as used in previous pipelines.
Specifically, we used FSL FLIRT [40] with default settings, performing
linear registration with trilinear resampling.

For testing on the unseen site dataset, an additional fifth UKB
preprocessing variant was exclusively applied to the UKB dataset. This
preprocessing, already executed by the dataset providers, is detailed
by Smith et al. [41]. Each preprocessed T1w image was resampled to
the MNI152 nonlinear 6th generation atlas [42] using FSL FLIRT [40,
43]. Both the preprocessed MRI and the linear transformation matrix
for this process were provided by the UKB. Considering the align-
ment with the 7th generation MNI152 atlas of our four implemented
preprocessing pipelines, we applied an additional common linear reg-
istration between 6th and 7th generation atlas spaces, we applied an
additional common linear registration between 6th and 7th generation
atlas spaces, followed by 3rd order resampling. This step ensured spa-
tial alignment across all preprocessed MRIs. The linear transformation
matrix between the two MNI spaces was pre-computed using FSL FLIRT.

2.3. Age prediction models

To study the effect of preprocessing in relation to model architec-
ture, four fundamentally different CNN models for brain age estimation
were reimplemented based on the descriptions in the literature. Only
minor alterations, such as adjustments for the input image dimensions,
were made to assure comparability across the experiments.

Model 1, proposed by Cole et al. [22], was a convolutional CNN
trained on full resolution 3D T1w MRIs. Model 2, proposed by Huang
et al. [24], was trained on 2D images by taking 15 equidistantly
sampled axial slices as input channels. Model 3, proposed by Ueda
et al. [23], was trained on downsampled T1w MRIs. Finally, Model 4,
proposed by Peng et al. [18], was a fully convolutional model trained
on full resolution 3D images. The architectures of the four models are
depicted in Fig. 2.

https://manpages.debian.org/testing/ants/N4BiasFieldCorrection.1.en.html
https://manpages.debian.org/testing/ants/N4BiasFieldCorrection.1.en.html
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
https://surfer.nmr.mgh.harvard.edu/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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Fig. 2. Architecture of the four reimplemented CNN models for brain age prediction.
Brain age estimation is typically formulated as a regression task,
such that the model outputs a non-negative real number reflecting the
age of the subject based on their T1w MRI scan. Models 1, 2, and 3
therefore had linear activation in the last fully connected layer so as to
output the scalar value representing the predicted age.

By contrast, Model 4 was designed as a classification model. Here,
the ground truth age value 𝑦 for each sample was transformed into a so-
called soft label, represented as Gaussian probability density with mode
located at the true age and unit variance. The probability density was
discretized into non-overlapping 2-year age intervals by integrating the
density over each age interval. The output age prediction was computed
as weighted sum over the class probabilities, i.e. 𝑦′ = ∑

𝑗 𝑝𝑗𝑎𝑔𝑒𝑗 , where
𝑝𝑗 denotes the probability of class 𝑗 and 𝑎𝑔𝑒𝑗 the center of the age class
interval.

All models were implemented in PyTorch 1.4.0 for Python 3.6.8.
Hyperparameter tuning. The learning rate and batch size hyperpa-

rameter values for each model were chosen based on a wide grid search,
which was set around the proposed values in corresponding original
papers. For instance, tested learning rate values were 10−2, 10−3, 10−4,
5 ⋅ 10−5, 10−5, and 10−6. The batch size for Models 2 and 3 was set to
4, 8, 16, 32 and 64. Due to graphics processing unit (GPU) constraints
we trained Model 1 with batch size 4, 8, 16 and 24 and Model 4 with
batch size 4 and 8. All tested hyperparameter combinations and their
results are given in Supplementary Fig. 8.

Hyperparameter selection was based on determining the epoch at
model convergence, i.e. by observing the course of the loss function,
and by observing MAE on the train and validation set in the last 10
epochs. To assure a robust choice of the hyperparameters with respect
to both MAE and convergence, we computed median MAE across last 10
training epochs, and the hyperparameter values with smallest median
MAE value were chosen as the optimal values.

The chosen optimal hyperparameter values in our study and the
originally proposed hyperparameter values are given in Supplementary
Table 5. Unless noted otherwise, we used these hyperparameters in all
subsequent experiments.

Loss function. The choice of loss function depended on the model
formulation as either regression or classification network. For Models 1,
2 and 3, we tested mean squared error (MSE) and L1 losses for multiple
hyperparameter values. Due to overall better performance and stability
of training, the three models were trained with the L1 loss. Model 4,
defined as a classification model, was trained with Kullback–Leibler
divergence as the loss function.

Optimizer. We used the stochastic gradient descent algorithm with
momentum 0.9 as proposed in three out of four studies [18,22], keeping
the learning rate decay schedule as originally proposed for each indi-
vidual model. We have experimentally determined that Models 1 and 4
typically converged after 110 epochs, while Model 2 and 3 converged
after 400 epochs.

Data augmentation. All models were trained with the following
data augmentation procedures: (1) random shifting along all major axes
with probability of 0.3 for an integer sampled from [−𝑠, 𝑠], where 𝑠 = 3
for Model 3 (downsampled 3D input T1w) and 𝑠 = 5 for Models 1,2,
4

and 4; (2) random padding with probability of 0.3 for an integer from
range [0, 𝑝], where 𝑝 = 2 for Model 3 and 𝑝 = 5 for Models 1,2, and
4; (3) flipping over central sagittal plane with probability of 0.5. Note
that the padding and shifting parameters are lower for Model 3, due to
the larger image spacing, which is as a result of image downsampling.

Further, the image size as input to the models was adapted during
the augmentation. We first we removed the non-informative empty
space around the head by cropping to size 157 × 189 × 170 about the
image center. Further, for Model 2 the 15 axial slices (predefined in
atlas space) were sampled to obtain input image size of 157 × 189 × 15,
while for Model 3 the input images were downsampled using sinc
resampling and cropped to size 95 × 79 × 78.

Weighted training. Weighted training is a strategy of assigning
higher sampling probabilities to subjects in underrepresented age cat-
egories, such that the expected number of samples from each age
category becomes equal. Due to the smaller number of subjects in age
groups above 80, weighted training was beneficial for classification
Model 4, but not for the other three models.7

Each subject was assigned a weight of 𝑁∕𝑛𝑖, where 𝑛𝑖 denotes the
number of samples in category 𝑖. Age categories were set to [18, 20),
[20, 25), [25, 30), …, [85, 90), [90, 100) as previously proposed
by Feng et al. [20] and sampled with replacement. The number of
sampled subjects was kept equal to the number of subjects 𝑁 , so that
the number per training epoch was kept equal to the experiments
without weighted training.

2.4. Postprocessing

Model ensembling. To avoid reporting the results of a single
(possibly biased) run, each model was trained five times, with different
weight initialization. The final prediction of a brain age was obtained
as the average of the five model predictions with different weight
initialization. On the multi-site T1w train set we trained a total of 80
models: 4× image preprocessing pipelines, 4× model architectures, and
5× random weight initialization.

Offset correction. We implemented the offset adjustment by sub-
tracting the value of mean error (ME) from the ensemble prediction,
determined as follows:

𝑦𝑐𝑜𝑟𝑟𝑖 = 𝑦′𝑖 −𝑀𝐸 = 𝑦′𝑖 −
1
𝑁

𝑁
∑

𝑗=1
(𝑦′𝑗 − 𝑦𝑗 ).

The ME was computed for each model/preprocessing combination.
Offset correction was applied only when predicting on unseen site
dataset.

7 The application of weighted training led to a statistically significant
reduction in absolute error for subjects over the age of 80 years, where
the number of training samples is lower. This significance was exclusively
observed for Model 4 (𝑝 < 0.001), whereas other models did not show such
an effect (results not shown).
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Fig. 3. Overview of the tested brain age train and test scenarios.
2.5. Evaluation protocol

For experiment evaluation we computed commonly used perfor-
mance metrics to highlight specific aspects of the prediction model
performances.

An established metric of model accuracy is the mean absolute error
(MAE):

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

𝑦′𝑖 − 𝑦𝑖
|

|

|

,

where 𝑦𝑖 denotes the true age and 𝑦′𝑖 the predicted age of 𝑖th subject.
We also report mean error (ME):

𝑀𝐸 = 1
𝑁

𝑁
∑

𝑖=1

(

𝑦′𝑖 − 𝑦𝑖
)

,

since values of ME deviating from zero show that a model on average
either under- or over-estimates age on the whole age interval. Assuming
the prediction error is normally distributed around zero, we expect ME
to be zero.

2.5.1. Statistical analysis
Linear mixed-effects models (LMEMs) were used to describe the re-

lationship between a prediction’s absolute error as dependent variable
and response variables that were set for each research question. Each
LMEM included model architecture, preprocessing procedure and their
interaction as fixed effect and subject ID as random effect, such that
all responses for a specific subject were shifted by a subject-specific
additive value. By modeling subject ID as random effect, we account
for dependent data that arises from multiple brain age predictions for
the same subject under multiple conditions (preprocessing procedure,
model architecture, offset correction).

We employed a stepwise approach in fitting LMEMs. Namely, the
models were first constructed with the fixed factors and, subsequently,
we incrementally incorporated fixed-factor interactions to increase
model complexity. To evaluate the benefit of increasing model com-
plexity, we utilized Analysis of Variance (ANOVA) for model compar-
ison, to test if the increase in complexity resulted in a statistically
significant improvement in explaining the observed variability in the
data.

For the final LMEMs, we reported regression coefficients and their
95% confidence intervals, provided in Supplementary materials. Re-
sults of LMEM analyses were supported by the ANOVA test declaring
statistical significance for 𝑝 < 0.01. Throughout the manuscript, we
will use the term significant to refer to statistically significant result.
Further, if the main fixed factor showed a difference in responses, a
post-hoc pairwise test was conducted, with confidence level of 0.95,
and multiplicity adjustments using Tukey’s correction.

LMEM analysis was conducted in R version 4.0.4, using ‘lme4’
package version 1.1.26. For computing 𝑝-values of ANOVA tests we
used package ‘lmerTest’ version 3.1.3. Finally, pairwise analysis was
conducted using package ‘emmeans’ version 1.5.4.
5

3. Experiments and results

The impact of T1w MRI image preprocessing on the accuracy and
reproducibility of brain age predictions using the four CNN models was
studied in three scenarios shown in Fig. 3: (1) tested on the same-source
dataset and preprocessing as used during model training (Section 3.1),
(2) tested on an unseen site dataset, but preprocessed in the same
way as the training dataset (Section 3.2), (3) tested on an unseen site
dataset, preprocessed differently than the training dataset (Section 3.3).

3.1. Effect of image preprocessing

Our goal is to evaluate the impact of the particular choice of image
preprocessing on various CNN architectures, as described in respective
Sections 2.2 and 2.3. On the multi-site T1w training set, we trained
a total of 80 models: 4× image preprocessing pipelines, 4× model ar-
chitectures, and 5× random weight initializations. Brain age predictions
were obtained as the average age prediction of five models trained with
different random weight initializations. The model accuracy metrics are
presented in Table 1.

We further fit a LMEM model with model architecture and pre-
processing procedure as main effects and subject ID as random effect.
The ANOVA test and 95% CI interval values showed both fixed factors
as significant (𝐹 (3, 3699) = 49.49, 𝑝 < 2.2𝑒−16 for model architecture;
𝐹 (3, 3699) = 5.09, 𝑝 = 0.002 for preprocessing). We increased the LMEM
complexity by including the interaction of the fixed factors; however
the interaction term was not significant (𝐹 (9, 3690) = 1.14, 𝑝 = 0.328).
However, due to significance of the fixed factors (𝐹 (3, 3690) = 49.51, 𝑝 <
2.2𝑒−16 for model architecture; 𝐹 (3, 3690) = 5.09, 𝑝 = 0.002 for prepro-
cessing) and the theoretically meaningful interaction, the interaction
was included in the final model despite not being significant. The
LMEM coefficients, their 95% CI, and ANOVA F-values are reported in
Supplementary Table 7.

The results of the LMEM post-hoc pairwise analysis are shown
in Fig. 4. Model 1 outperformed the other models across all four
preprocessing pipelines (cf. Table 1); however, these differences were
only significant between Model 1 and Model 2 (cf. Fig. 4). Furthermore,
the absolute error of Model 2 was found to be significantly higher
than the MAE of all 3D models (𝑝 < 0.001), for all but the AFF+GS
preprocessing. Out of the four, Model 2 exhibited the largest bias,
as measured by ME, for the RIG, RIG+GS and AFF+GS preprocessing
pipelines and the highest variability, indicated by a higher standard
deviation (cf. Table 1). It only achieved MAE below 4 years when
trained on the AFF+GS dataset. Notably, with this preprocessing, the
performance difference between Model 2 and the other models was not
significant for most pairs, as depicted in Fig. 4, but generally indicates
poorer performance of Model 2 compared to the 3D counterparts.

In terms of sensitivity to applied preprocessing, Model 2’s per-
formance varied the most. Conversely, the 3D models demonstrated
a more stable performance, with none of the three showing an in-
crease in MAE beyond 0.32 years. Particularly, the Model 4 showed
notable robustness to the change in applied preprocessing, registering

a fluctuation in MAE within the range of 0.07 years (cf. Table 1).
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Table 1
Multi-site test set results for 16 combinations of the four preprocessing pipelines and four model architectures. Best MAE values wrt. model
architecture (rows) are marked in bold, while best values wrt. image preprocessing procedure (columns) are underlined. All numbers are in
years.

RIG RIG+GS AFF+GS Fs+FSL

ME (sd) MAE (sd) ME (sd) MAE (sd) ME (sd) MAE (sd) ME (sd) MAE (sd)

Model 1 −0.46 ± 4.10 3.18 ± 2.61 −0.25 ± 4.14 3.12 ± 2.73 −0.03 ± 3.86 2.96 ± 2.47 0.26 ± 4.30 3.22 ± 2.86
Model 2 −0.96 ± 5.75 4.47 ± 3.73 −1.11 ± 5.49 4.29 ± 3.59 −0.80 ± 4.81 3.72 ± 3.14 0.13 ± 5.44 4.08 ± 3.58
Model 3 −0.13 ± 4.41 3.45 ± 2.75 −1.03 ± 4.40 3.50 ± 2.85 −0.68 ± 3.90 3.18 ± 2.35 −0.26 ± 4.61 3.45 ± 3.06
Model 4 −0.85 ± 4.33 3.32 ± 2.90 −0.74 ± 4.34 3.29 ± 2.92 −0.46 ± 4.21 3.25 ± 2.70 −0.13 ± 4.52 3.31 ± 3.07
ig. 4. Results of LMEM post-hoc pairwise statistical tests on multi-site dataset for all MRI preprocessing and model architecture combinations. The color of each square marks
tatistical significance: red for 𝑝 < 0.001, orange for 0.01 ≤ 𝑝 < 0.001, yellow for 0.05 ≤ 𝑝 < 0.01 and white for 𝑝 > 0.05 (not significant).
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Table 2
Mean ensemble MAE values on the unseen site dataset (UKB), preprocessed in the same way as the multi-site training data. Results are presented for 16 model and preprocessing
ombinations, with (offset) and without (none) offset correction. Best MAE values wrt. model architecture (rows) are underlined, while best values wrt. image preprocessing procedure

(columns) are marked in bold. All numbers are in years.
Corr. RIG RIG+GS AFF+GS Fs+FSL

ME (sd) MAE (sd) ME (sd) MAE (sd) ME (sd) MAE (sd) ME (sd) MAE (sd)

Model 1 none −3.65 ± 4.13 4.48 ± 3.22 −3.60 ± 4.19 4.47 ± 3.25 −2.10 ± 4.21 3.73 ± 2.88 −0.73 ± 4.09 3.33 ± 2.48
offset 0.0 ± 4.13 3.26 ± 2.54 −0.0 ± 4.19 3.33 ± 2.55 −0.0 ± 4.21 3.31 ± 2.60 −0.0 ± 4.09 3.28 ± 2.43

Model 2 none −1.70 ± 6.26 5.07 ± 4.05 −1.65 ± 6.08 4.90 ± 3.94 −1.58 ± 5.53 4.32 ± 3.78 0.03 ± 5.74 4.54 ± 3.52
offset 0.0 ± 6.26 4.95 ± 3.84 −0.0 ± 6.08 4.75 ± 3.79 0.0 ± 5.53 4.21 ± 3.58 −0.0 ± 5.74 4.54 ± 3.52

Model 3 none −3.64 ± 4.56 4.73 ± 3.42 −4.38 ± 4.64 5.26 ± 3.61 −2.26 ± 4.51 3.93 ± 3.16 −2.00 ± 4.32 3.78 ± 2.90
offset −0.0 ± 4.56 3.61 ± 2.79 0.0 ± 4.64 3.70 ± 2.79 −0.0 ± 4.51 3.51 ± 2.82 −0.0 ± 4.32 3.42 ± 2.64

Model 4 none −4.42 ± 4.69 5.19 ± 3.83 −3.29 ± 4.69 4.49 ± 3.55 −1.64 ± 4.4 3.65 ± 2.95 −0.71 ± 4.57 3.63 ± 2.86
offset 0.0 ± 4.69 3.69 ± 2.90 −0.0 ± 4.69 3.71 ± 2.86 0.0 ± 4.40 3.45 ± 2.73 0.0 ± 4.57 3.59 ± 2.83
Compared to the RIG pipeline, the RIG+GS included gray scale
orrection steps, but resulted in only a marginal overall decrease in
AE. None of the differences were significant (cf. Fig. 4). When switch-

ng between rigid (RIG+GS) and affine registration (AFF+GS), an im-
rovement in performance was observed for all models. Model 1 on
he AFF+GS dataset achieved an MAE of 2.96 years, which was the
est result reported in this study. While all models generally exhib-
ted enhanced performance with the AFF+GS preprocessing pipeline,
his improvement was significant only for Model 2 when comparing
FF+GS to RIG (𝑝 = 0.003).

.2. Performance on an unseen site dataset

In this experiment, we evaluated the performance of 16 model
nsembles on unseen site dataset. Generally, new data may come from
different MRI scanner or have undergone different preprocessing than

he data used to train the models. We preprocessed the unseen site
ataset in the same way as the training data, which is a common
cenario in practice.

To evaluate the performance of the models on an unseen site
ataset, we predicted brain age for all 1493 T1w scans of the UKB
ataset without any additional training. For each model and prepro-
essing combination, we averaged the results across five pretrained
odels with different weight initializations. This resulted in a total

f 16 predictions, one for each model and preprocessing combination,
erving as our baseline.

Upon inspecting the Supplementary Fig. 9, a systematic offset in age
rediction across the entire age span was observed. This offset, inherent
o each combination of architecture and preprocessing prediction, can
e reduced by applying an offset correction (cf. Section 2.4). The evalu-
tion included a comparative analysis of (1) the baseline predictions of
ncorrected mean ensemble, and (2) the offset-corrected predictions,
omputed by subtracting the ME from the predicted brain age value.

To estimate the influence of the preprocessing pipeline on model
erformance on the unseen dataset, a LMEM model was fitted with
rchitecture, preprocessing, presence or absence of offset correction,
heir two-way and three-way interactions as fixed effects, and subject
D as a random effect. The ANOVA test confirmed that this model
xplained more variability than the model with no interactions (𝑝 <
0.001) and the model with only two-way interactions (𝑝 < 0.001). The
ANOVA test of effects showed all main effects, their two-way, and
three-way interactions as significant (𝑝 < 0.001). Detailed results of
the LMEM model and ANOVA test are presented in the Supplementary
Table 8.

The prediction errors of pretrained models on an unseen dataset are
presented in Table 2. The baseline MAE values ranged from 5.26 years
for the 2D Model 2 with RIG+GS preprocessing to 3.33 years for Model
1 with Fs+FSL preprocessing. Bias, as measured by the ME, demon-
strates that all models on average underestimate brain age when used
on an unseen dataset. Notably, the 2D model consistently exhibited the
7

smallest bias; however, it also had the largest standard deviation in
error across all preprocessing pipelines, approximately by one year.

Fig. 5 illustrates the pairwise difference in marginal means and
their statistical significance between the preprocessing procedures, con-
ditional on the model architecture and the presence or absence of
offset correction, for the aforementioned LMEM. Prior to offset cor-
rection, datasets with affine correction consistently demonstrated the
best performance. Specifically, for Model 1, the results from the Fs+FSL
dataset outperformed those from all other preprocessing pipelines. For
Models 2, 3, and 4, both Fs+FSL and AFF+GS datasets showed superior
performance compared to the rest of the preprocessing pipelines, yet no
significant distinction was observed between the two.

When comparing model architectures, Models 1 and 4 consistently
surpassed Models 2 and 3, which were trained on reduced information.
The only exception was with the RIG preprocessing procedure, where
Model 1 alone excelled. Even after offset correction, the 3D models
maintained a performance advantage over the 2D model.

Applying offset correction reduced the MAE by 0.54 years on aver-
age. The distinction in performance between RIG and RIG+GS remained
non-significant for all models (cf. Fig. 5). Model 1 yielded the best
performance across all preprocessing pipelines, achieving an overall
best MAE of 3.31 ± 2.60 with the RIG preprocessing. Although the
superior results from RIG might be surprising, it is critical to note
that Model 1 demonstrated robustness to change in preprocessing,
exhibiting MAE within the range of 0.07 years. Model 2 was the most
sensitive to preprocessing. It performed best when trained with affine
registration, indicating its sensitivity to spatial information.

3.3. Performance on unseen dataset with new image preprocessing

We further considered the cumulative effect of an unseen site
dataset, not seen during model training, additionally with different
image preprocessing as applied on dataset used for model training.
The UKB was preprocessed by the dataset provider, as described in
Section 2.2. Without additional training, we predicted the age for all
80 trained models. The model predictions were averaged across five
models with different weight initialization, resulting in 16 predictions
for each T1w MRI (baseline). As in the previous experiment, we
comparatively evaluated (i) the baseline predictions and (ii) the offset-
corrected predictions (cf. Section 2.4). The prediction offset on the
unseen dataset is constant across the entire age span, as evidenced by
Supplementary Fig. 9.

The MAE and ME metrics of the 16 mean ensembles are presented in
Table 3. To estimate the influence of preprocessing pipeline, we fitted
a LMEM model with architecture, preprocessing, presence or absence
of offset correction, their two-way and three-way interactions as fixed
effects, and subject ID as random effect. The ANOVA test confirmed
that this model explained more variability than simpler LMEM models
(𝑝 < 0.001). The ANOVA test of effects shows all main effects, their
two-way, and three-way interactions as significant (𝑝 < 0.001). Details
are provided in the Supplementary Table 9.
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Fig. 5. The pairwise differences in marginal means between preprocessing procedures conditional on the model architecture and the presence (lower) or absence (upper) of offset
correction on the unseen site dataset. The preprocessing procedure of the dataset was the same as the preprocessing procedure applied to the training data. The color of each
square marks the significance level of difference: red for 𝑝 < 0.001, orange for 0.01 ≤ 𝑝 < 0.001, yellow for 0.05 ≤ 𝑝 < 0.01 and white for 𝑝 > 0.05 (not significant).
Table 3
Mean ensemble MAE values on the unseen site dataset (UKB), preprocessed using a different pipeline than used for the multi-site training data. Results are presented for 16 model
and preprocessing combinations, with (offset) and without (none) additional offset correction. Best MAE values wrt. model architecture (rows) are underlined, while best values wrt.
image preprocessing procedure (columns) are marked in bold. All numbers are in years.

Corr. RIG RIG+GS AFF+GS Fs+FSL

ME (sd) MAE (sd) ME (sd) MAE (sd) ME (sd) MAE (sd) ME (sd) MAE (sd)

Model 1 none −9.14 ± 4.54 9.23 ± 4.37 −10.47 ± 4.68 10.52 ± 4.57 −3.33 ± 4.64 4.65 ± 3.31 −2.53 ± 4.55 4.22 ± 3.04
offset −0.0 ± 4.54 3.64 ± 2.72 −0.0 ± 4.68 3.71 ± 2.86 0.0 ± 4.64 3.71 ± 2.78 0.0 ± 4.55 3.66 ± 2.70

Model 2 none −12.74 ± 7.02 12.91 ± 6.72 −18.20 ± 6.63 18.20 ± 6.63 −9.58 ± 5.84 9.80 ± 5.46 −7.97 ± 7.28 8.88 ± 6.12
offset −0.0 ± 7.02 5.58 ± 4.26 −0.0 ± 6.63 5.25 ± 4.05 0.0 ± 5.84 4.68 ± 3.50 −0.0 ± 7.28 5.90 ± 4.26

Model 3 none −8.41 ± 4.51 8.53 ± 4.26 −14.44 ± 4.87 14.46 ± 4.82 −7.72 ± 4.75 7.94 ± 4.37 −2.82 ± 4.75 4.45 ± 3.28
offset −0.0 ± 4.51 3.59 ± 2.72 0.0 ± 4.87 3.88 ± 2.94 0.0 ± 4.75 3.81 ± 2.84 0.0 ± 4.75 3.75 ± 2.92

Model 4 none −6.93 ± 5.43 7.38 ± 4.80 −11.71 ± 6.16 11.8 ± 5.98 −2.50 ± 5.25 4.43 ± 3.75 −0.06 ± 4.90 3.83 ± 3.05
offset −0.0 ± 5.43 4.30 ± 3.31 0.0 ± 6.16 4.91 ± 3.71 −0.0 ± 5.25 4.07 ± 3.30 0.0 ± 4.90 3.83 ± 3.05
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For baseline results, the predicted age was generally underestimated
or the unseen UKB dataset, with ME as low as −18.20 years for
odel 2 on RIG+GS dataset, and only −0.06 years for Model 4 with

s+FSL preprocessing. This may be expected, considering the smaller
ge span of the UKB population compared to the multi-site train set
opulation (cf. Supplementary Table 4). Large error values, up to
0 years, were observed for Model 2. The model exhibited a large bias
nd errors across all four image preprocessing procedures. Additionally,
he variance of predictions was larger for 3D models, as seen from
upplementary Fig. 10.

Fig. 6 illustrates the pairwise differences in marginal means of
reprocessing, conditional on the model architecture, and the pres-
nce or absence of offset correction. For the baseline results, large
nd significant differences in performance were observed between all
ombinations of the preprocessing pipelines and models. The disparity
n performance is most pronounced between models trained on datasets
ith affine registration and those with rigid registration; for the former,

he MAE nearly doubled. For instance, Model 1, when trained on
he RIG+GS dataset, yielded a MAE of 10.52 years, whereas it was
.22 years with the Fs+FSL preprocessing. For all models, the best
aseline result was achieved for Fs+FSL, which can be attributed to
he fact that the same software was used for preprocessing of the UKB
ataset (Section 2.2).

Correction of systematic offset improved MAE for 4.56 years on
verage. Despite offset correction, the introduction of different prepro-
essing of the test set, led to the average increase in MAE 0.5 years,
8

a

hen compared to the results in Table 2 from Section 3.2. This increase
as smallest for Model 3 and largest for Model 4. Additionally, the

tandard deviation of the absolute error increased by up to 0.85 years,
nd the standard deviation of error also grew by as much as 1.5 years.

In the offset-corrected results, Model 1 generally exhibited best per-
ormance, only being surpassed by Model 3 with the RIG preprocessing,
chieving an overall best MAE of 3.59 years. For these two architec-
ures, there were no significant differences in performance based on the
reprocessing procedure used on the training data (cf. Fig. 6). Despite
he differences in datasets and associated preprocessing between the
raining and testing phases, Model 1 showcased high robustness (MAE
ariation of 0.07 years), while Model 4 displayed optimal performance
rior to offset correction and only matched Model 1 on the Fs+FSL
ataset after applying the offset correction. Hence, Model 4 seems sus-
eptible to differences due to preprocessing. As previously, Model 2 was
utperformed by the three 3D models. Nevertheless, the introduction of
ffine registration enhanced the Model 2’s performance.

. Discussion

This work studied the effect of four different T1w preprocessing
rocedures and implementations on the brain age prediction accuracy
sing deep learning-based models. For this purpose we implemented,
rained and evaluated four CNN architectures presented in the brain
ge literature.
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Fig. 6. The pairwise difference in marginal means between preprocessing procedures conditional on model architecture in the presence (lower) or absence (upper) of offset correction
on the unseen site dataset. The preprocessing procedure of the dataset differed from preprocessing procedure of the multi-site training dataset. The color of each square marks
the significance of difference: red for 𝑝 < 0.001, orange for 0.01 ≤ 𝑝 < 0.001, yellow for 0.05 ≤ 𝑝 < 0.01 and white for 𝑝 > 0.05 (not significant).
4.1. Impact of T1w image preprocessing and model architecture

In comparing the four T1w preprocessing pipelines, the most com-
plex AFF+GS pipeline consistently yielded slightly higher brain age
prediction accuracy across all models, though this difference was not
significant. Increasing the complexity of registration was shown as
beneficial in study by Peng et al. [18], wherein the T1w preprocess-
ing procedures including either linear or non-linear registration were
compared, resulting in slight favor of the latter. Conversely, Dartora
et al. [21] found that a ResNet-based model trained on minimally
preprocessed MRIs outperformed models trained with extensive pre-
processing. We hypothesize that this superiority may be due to the
effects of skull-stripping rather than the complexity of registration
and inclusion of gray scale corrections. Skull-stripping, by removing
surrounding tissues, potentially eliminates contextual information re-
lated to cerebrospinal fluid levels, which are known to increase with
age [44,45].

Notably, the inclusion of gray scale correction into the pipeline,
i.e. denoising and intensity inhomogeneity correction, while not di-
rectly improving MAE, was needed for accurate (linear) image registra-
tion used in our preprocessing pipelines. On the other hand good spatial
normalization of the input T1w scans eliminates the inter-subject vari-
ance due to head size differences and MRI-acquisition related geometric
artifacts. As such it particularly benefited Model 2 and 3, receiving
downsampled input information.

Discussing computational complexity, Tanveer et al. [46] advocate
the shift towards 2D CNN brain age prediction models for use on rou-
tine MRIs, with minimal preprocessing. However, our findings contrast
this perspective, showing a significant inferiority of the implemented
2D model versus all tested 3D models. The 2D model achieved com-
parable performance only when trained with the AFF+GS preprocessed
dataset. This finding is in line with Feng et al. [20], who showed that
a 2D model, which is designed analogous to a 3D model, performs
significantly worse. Therefore any future 2D implementations cannot
be naive re-implementations of the 3D models, but need to introduce
a methodological improvement, like for instance Jönemo et al. [47],
predicting age from 2D projections of the 3D MRI volumes.

Preprocessing is generally more computationally demanding than
the brain age inference using DL model. The implemented preprocess-
ing pipelines took from 1.5 (RIG) to 16.5 min (AFF+GS), which seems
reasonable even for practical implementations. In contrast, model infer-
ence for brain age prediction takes only a few seconds, which is negligi-
ble compared to the preprocessing times. However, in resource-limited
9

situations (e.g. no GPU), there is a trade-off between implementability
and accuracy, as noted by Dartora et al. [21]. Therefore, when selecting
the optimal model-pipeline combination, it could become crucial to
balance computational requirements and resources against the desired
level of accuracy.

Models trained on the Fs+FSL preprocessing, using common soft-
ware such as FSL and FreeSurfer, presented higher MAE scores than
those trained using the AFF+GS pipeline, despite both methods in-
corporating affine registration and grayscale corrections. Although the
differences were not significant, this observation implies that the choice
of software could still have a substantial impact on the observed
performances, as also highlighted in neuroimaging cortical surface
analyses by Kharabian Masouleh et al. [30] and further supported
by Bhagwat et al. [31]. It also implies that the results from brain
age prediction models, which are trained on the same data but with
different T1w preprocessing software implementations, might not be
directly comparable.

Comparing the performances reported in the original papers where
the four tested CNN models were introduced is challenging, not to
mention the variations in training dataset sizes and age structures.
For instance, the MAE of Model 1 reported herein was 1 year lower
than the MAE reported by Cole et al. [22], even though both used
similar T1w preprocessing (RIG), and had comparable training set
structures and sizes. We attribute the improvement partially to the
mean ensembling and largely to extensive hyperparameter tuning, and
the implementation of the preprocessing.

Reproducibility of DL model predictions is critically governed by
the availability of the datasets and method implementations, an obser-
vation that is supported by the results of this study. For this purpose
we applied public datasets and provided the lists of included subject
IDs and the exact dataset split assignments as used in this study, as
well as the implementations and dependencies of the T1w preprocess-
ing routines, brain age models, scripts to re-run the experiments and
carry out the performance evaluations and statistical analyses, all dis-
closed at the public GitHub repository https://github.com/AralRalud/
BrainAgePreprocessing.

4.2. Performance on unseen site dataset with possible new preprocessing

New scanner data, unseen during model training, will generally
introduce bias into the brain age estimates of DL models. The increase
in MAE on the unseen dataset varied from 0.11 to 1.87 years in
comparison to multi-site dataset, varying based on the model and

https://github.com/AralRalud/BrainAgePreprocessing
https://github.com/AralRalud/BrainAgePreprocessing
https://github.com/AralRalud/BrainAgePreprocessing
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chosen preprocessing. In related research, Feng et al. [20] reported a
rather small increase in MAE of 0.15 years. Multiple other deep learning
studies indicate that this increase (or accuracy deterioration) to be
much larger. Jonsson et al. [33] reported an increase in MAE of about
3 and 5 years on two separate unseen site datasets. Drop in brain age
prediction accuracy was reported also for models trained on datasets
with minimal T1w preprocessing. Dartora et al. [21] reported a 1 and
3 year increase in MAE on two independent datasets. Fisch et al. [27]
report a 5 year increase on three datasets, prior to applying transfer
learning.

While models can partly mitigate differences in preprocessing be-
tween training and test sets, both bias and variance will increase.
Introducing new preprocessing, different from that used in training,
resulted in MAE values with RIG and/or RIG+GS pipelines more than
doubling compared to those obtained with Fs+FSL and/or AFF+GS
pipelines, with the increase in MAE ranging from 13.91 to 0.52 years.
Focusing solely on full-resolution 3D Models 1 and 4, trained on
AFF+GS and Fs+FSL pipelines, this increase ranged from only 1.69
to 0.52 years, even before offset correction. These best results align
with previously mentioned values, though none of the related studies
considered the increase in difference due to changes in preprocessing.
We attribute this to the similarity of the T1w preprocessing pipeline
(and software) applied to the UKB dataset, as well as generally observed
better performance of the models trained with the Fs+FSL and/or
AFF+GS pipelines.

However, the increase in MAE seems intrinsically connected to the
previously unseen dataset and/or new (unseen) preprocessing proce-
dure, causing domain shift. Domain shift induced deviations of the DL
model based age prediction from the actual age may involve a large
systematic bias that can be corrected with a simple mitigation strategy.
For instance, our model predictions were corrected for age-independent
constant offset. Though bias correction, t. i. fitting a linear regression
to predictions on validation or test sets, is commonly used in the liter-
ature [18,26,29,48–50], several recent studies have cautioned against
it [51,52]. Unlike fitting a linear regression line, offset correction does
not correct for model’s inability to capture linear trend, nor reduces
prediction dispersion.

In contrast to the differences in MAE predictions on multi site-
dataset, where only marginally significant differences were observed,
the differences between models and preprocessing procedures were
indeed clearly significant when inferring on the unseen dataset. Among
the T1w preprocessing procedures evaluated, those with higher com-
plexity of registration (Fs+FSL and AFF+GS) exhibited the lowest brain
age prediction errors when predicting on unseen site dataset, both be-
fore and after offset correction. These results are in line with the obser-
vation by Cole et al. [22], who found a substantially reduced between-
scanner reliability for a model trained on minimally preprocessed T1w
images, although Model 1 displayed equivalent performance across all
preprocessing pipelines. This shows that, the extensive preprocessing
can improve accuracy and acts as a form of data harmonization for
unseen site datasets, ensuring consistent predictions.

It is worth noting that the size and age structure in the dataset may
adversely influence the brain age prediction accuracy. For example, be-
fore offset correction, the models tended to underestimate the age of the
subjects in the UKB dataset, which could be due to the younger age of
the individuals in the training dataset. Additionally, the observed MAE
values on the multi-site and unseen site dataset after offset correction
were comparable, which may be partially attributed to the smaller age
range of the subjects in the UKB dataset. However, MAE is unlikely
to increase proportionally with the widening of the age range in adult
datasets, as assumed by Cole et al. [53]. For instance, in an experiment
conducted by Peng et al. [18], Model 4, when trained on the UKB
and in a separate experiment on a dataset with ages ranging from 17
to 90 years of somewhat similar sizes (i.e., 2600 and 2200 subjects),
achieved MAE values of 2.76 and 2.9 years, respectively.
10
5. Conclusion

In this paper we studied the effect of preprocessing procedure of
T1w MRIs on the prediction accuracy of deep brain age models. We
considered four preprocessing pipelines, which differed in the degree
of freedom of T1w to brain atlas registration, the level of gray scale
corrections and software implementations used. Our results for four
different CNN architecture show that the choice of software implemen-
tation resulted in significant increase in MAE, up to 0.75 years for the
same model and dataset. We further show that applying the grayscale
corrections does not significantly improve MAE of model predictions.
The type of registration was shown to significantly improve MAE when
using affine compared to the rigid registration. Models trained on
images with isotropic 1 × 1 × 1 mm3 spacing were less sensitive to the
type of T1w preprocessing than the 2D model or the model trained on
downsampled 3D images. Most affected by the (mis)registration of the
input T1w MRI was the 2D model, since it was limited to only 15 axial
slices, predefined in the MNI brain atlas space. In this case, the affine
registration was crucial for good model performance, especially when
predicting brain age on new dataset not seen during model training.
Despite assumptions that models trained on less processed data are
better suited for brain age prediction on new scanner datasets, not seen
in model training, our results show that extensive T1w preprocessing in
fact improves the generalization of brain age models when applied on
an unseen datasets. Regardless of the model or the T1w preprocessing
used, offset correction should be applied whenever predicting brain age
on a new dataset with either the same or different T1w preprocessing
as the one used in model training.
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Appendix A. Dataset and model details

A.1. Dataset details

See Table 4 and Fig. 7.

A.2. Hyperparameter tuning and selection of loss function

We have experimentally determined that Models 1 and 4 typically
converged after 110 epochs, while Model 2 and 3 converged after 400
epochs.

Supplementary Fig. 8 presents median, minimal and maximal MAE
values of the last 10 epochs for each hyperparameter setting. By choos-
ing the model with smallest median MAE in the last 10 epochs we could
identify hyperparameter setting, with which the training converged
well. Due to GPU space constraints, the maximal batch size was 24 for
Model 1 and 9 for Model 4.

For regression Model 1, 2 and 3, training with the MSE loss often
diverged for larger learning rate values; this was also the case for
Models 2 and 3 with the learning rate values set as proposed in original
papers. In general, we observed that training with L1 loss was most
stable and produced overall lower MAE values, compared to the use
of Mean-Squared Error and Kullback–Leibler divergence losses. Hence,
hereafter we used the L1 loss in regression Models 1, 2, 3. The chosen
optimal hyperparameter values and the original and resulting model
accuracy are given in Supplementary Table 5.

Unless noted otherwise, we used the hyperparameters reported in
Supplementary Table 5. in all subsequent experiments. Models based
on these hyperparameters represent our baseline models.
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Table 4
Age statistics, i.e. span, mean age (𝜇𝐚𝐠𝐞), and associated standard deviation (𝐬𝐝𝐚𝐠𝐞) in
years, per dataset included in the train, test, and validation datasets (top), and the
unseen site datasets (bottom).
Aim: Train, validation, test (Multi-site T1w scans)

Dataset 𝐍𝐬𝐜𝐚𝐧𝐬 Age span 𝜇𝐚𝐠𝐞 ± 𝐬𝐝𝐚𝐠𝐞
ABIDE Ia 161 18.0−48.0 25.7 ± 6.4
ADNIb,h 248 60.0−90.0 76.2 ± 5.1
CamCAN
[54,55]c

624 18.0−88.0 54.2 ± 18.4

CC-359 [56]d 349 29.0−80.0 53.5 ± 7.8
FCON 1000e 572 18.0−85.0 45.3 ± 18.9
IXIf 472 20.1−86.2 49.0 ± 16.2
OASIS-2 [57]g 78 60.0 − 95.0 75.6 ± 8.4
Total 2504 18.0−95.0 52.1 ± 19.1

Aim: Test (Unseen T1w scans)

Dataset 𝐍𝐬𝐮𝐛𝐣 Age span 𝜇𝐚𝐠𝐞 ± 𝐬𝐝𝐚𝐠𝐞
UK Biobank [58] 1493 48.5−80.4 63.1 ± 7.2

a Data available at: http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html.
b Data available at: http://adni.loni.usc.edu/.
c Data available at: https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/.
d Data available at: https://sites.google.com/view/calgary-campinas-dataset/
download.
e Data available at: http://fcon_1000.projects.nitrc.org/indi/enhanced/neurodata.html.
f Data available at: https://brain-development.org/ixi-dataset/.
g Data available at: https://www.oasis-brains.org/.
h Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public–private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

A.3. Model predictions on unseen site dataset

The Supplementary Fig. 9 and Supplementary Fig. 10 show model
predictions on UKB dataset using the same (Section 3.2) and different
preprocessing (Section 3.3) as used on the training set. The predic-
tions show a clear systematic offset, specific to each combination of
preprocessing and model architecture.

A.4. Execution times

All experiments were run on the same workstation with Intel Core
i7-8700K CPU, 64 GB system memory and three NVIDIA GeForce
RTX 2080 Ti GPUs, each with 11 GB dedicated memory. The image
preprocessing pipelines and model architectures differed based on their
execution and training time, respectively, and the hardware require-
ments (cf. Table 6). The RIG preprocessing pipeline took < 2 min,
while the more complex AFF+GS took 4-7 min per image. The Fs+FSL
pipeline was most time consuming, taking > 15 min per image on
average.

The difference in both the model training time and the hardware
requirements is substantial for different model architectures. Models 1
and 4, trained on full resolution input 3D images require more than
twice as much training time and GPU memory, compared to Models 2
and 4. Despite the larger number of trainable parameters in Model 3,
its accuracy and robustness were comparable to that of Models 1 and
4.

Appendix B. Linear mixed effect model results

The subsequent section presents detailed results from the LMEM and
ANOVA tests corresponding to specific experiments. Specifically, refer
to Table 7 for Section 3.1, Table 8 for Section 3.2, and Table 9 for
Section 3.3. The levels of statistical significance are denoted as: ‘∗∗∗’
for 0 < 𝑝 < 0.001, ‘∗∗’ for 0.001 < 𝑝 < 0.01 and ‘∗’ for 0.01 < 𝑝 < 0.05.

http://www.fnih.org
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
http://adni.loni.usc.edu/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://sites.google.com/view/calgary-campinas-dataset/download
https://sites.google.com/view/calgary-campinas-dataset/download
http://fcon_1000.projects.nitrc.org/indi/enhanced/neurodata.html
https://brain-development.org/ixi-dataset/
https://www.oasis-brains.org/
https://en.wikipedia.org/wiki/
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Fig. 7. Density of age distribution per each dataset and combined multi-site dataset, depicted for train, test and validation set splits.
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Fig. 8. Median, minimal and maximal MAE value of 10 last training epochs for each hyperparameter setting. The hyperparameter values proposed in original research of four
models are marked with square, the ones resulting in training divergence are marked as NA and with a cross. Hyperparameter space for large batch sizes was inaccessible due to
hardware limitations and is grayed out.
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Table 5
Proposed hyperparameter values in original literature and the values chosen herein. The resulting model accuracy is reported as MAE in
years.

Model 1 Model 2

Proposed Implemented Proposed Implemented

Input size 182 × 218 × 182 157 × 189 × 170 157 × 189 × 15
aBatch size 28 16 16 32
aLoss function L1 MSE L1
aLearning rate 1 × 10−2 1 × 10−4 1 × 10−4 1 × 10−3

Learning rate decay 3% 1 × 10−4

Weight decay 5 × 10−5 1 × 10−3

Momentum 0.9 0.9
Parameters ≈900 000 ≈6.6 mio

MAE (Test) [years]𝑚𝑒𝑑[𝑚𝑖𝑛, 𝑚𝑎𝑥] 4.65 3.57 [3.52, 3.61] 4.0 4.23 [4.14, 4.67]

Model 3 Model 4

Proposed Implemented Proposed Implemented

Input size 95 × 79 × 78 160 × 192 × 160 157 × 189 × 170
aBatch size 16 8 8 8
aLoss function MSE L1 Kullback–Leibler divergence
aLearning rate 5 × 10−5 1 × 10−2

Learning rate decay 1 × 10−4 ×0.3 every 30 epochs
Weight decay 5 × 10−4 1 × 10−3

Momentum 0.9 0.9
Parameters ≈900 000 ≈6.6 mio

MAE (Test) [years]𝑚𝑒𝑑[𝑚𝑖𝑛, 𝑚𝑎𝑥] 3.67 3.57 [3.52, 4.26] 2.14 3.35 [3.29, 3.42]

a Hyperparameters were reevaluated.
Fig. 9. Model predictions on UKB dataset, preprocessed in the same manner as the training set.
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Fig. 10. Model predictions on UKB dataset, preprocessed using different preprocessing pipeline as the training set.
Table 6
Average run time of preprocessing pipeline per image (left) and model training times with
hardware requirements (right).
Image preprocessing Time [m:ss] Model Time [h] No. GPUs

RIG 1:25 Model 1 15.5 2
RIG+GS 6:30 Model 2 8.9 1
AFF+GS 7:40 Model 3 7.17 1
Fs+FSL 16:20 Model 4 20.2 3
Table 7
Results of ANOVA and LMEM with absolute error as response variable, model architecture and preprocessing procedure as fixed factor on test
set of Multi-site dataset: 𝐴𝑏𝑠 𝐸𝑟𝑟𝑜𝑟 = 𝑀𝑜𝑑𝑒𝑙 + 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 +𝑀𝑜𝑑𝑒𝑙 ∗ 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + (1|𝐼𝐷). Interaction was not statistically significant. Here,
‘NumDF’ denotes the numerator degrees of freedom, and ‘DenDF’ denotes the denominator degrees of freedom.

ANOVA NumDF DenDF F value 𝑝-value LMEM Estimate Std. Err. 2.5% 97.5%

Intercept 3.181 0.190 2.809 3.553

Model 3 3690 49.506 ∗∗∗ Model 2 1.290 0.181 0.936 1.645
Model 3 0.265 0.181 −0.090 0.612
Model 4 0.135 0.181 −0.220 0.489

Preproc. 3 3690 5.090 ∗∗ RIG+GS −0.062 0.181 −0.416 0.293
AFF+GS −0.221 0.181 −0.575 0.134
Fs+FSL 0.036 0.181 −0.319 0.390

Model: 9 3690 1.143 Model 2:RIG+GS −0.117 0.256 −0.619 0.384
Preproc Model 3:RIG+GS 0.111 0.256 −0.390 0.612

Model 4:RIG+GS 0.033 0.256 −0.468 0.534
Model 2:AFF+GS −0.533 0.256 −1.034 −0.032
Model 3:AFF+GS −0.048 0.256 −0.549 0.454
Model 4:AFF+GS 0.155 0.256 −0.347 0.656
Model 2:Fs+FSL −0.426 0.256 −0.927 0.075
Model 3:Fs+FSL −0.033 0.256 −0.535 0.468
Model 4:Fs+FSL −0.037 0.256 −0.539 0.464

Random effects Variance SD

Subject ID (Intercept) 4.843 2.201
Residual 4.055 2.014
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Table 8
Results of ANOVA and LMEM tests on the UK Biobank dataset preprocessed with the same preprocessing procedure as the training dataset with
absolute error as response variable, and model architecture, offset correction (OC) and preprocessing procedure as fixed factor: 𝐴𝑏𝑠 𝐸𝑟𝑟𝑜𝑟 =
𝑀𝑜𝑑𝑒𝑙+ 𝑃𝑟𝑒𝑝𝑟𝑜𝑐.+𝑂𝐶 +𝑀𝑜𝑑𝑒𝑙 ∗ 𝑃𝑟𝑒𝑝𝑟𝑜𝑐 +𝑀𝑜𝑑𝑒𝑙 ∗ 𝑂𝐶 + 𝑃𝑟𝑒𝑝𝑟𝑜𝑐 ∗ 𝑂𝐶 +𝑀𝑜𝑑𝑒𝑙 ∗ 𝑃𝑟𝑒𝑝𝑟𝑜𝑐 ∗ 𝑂𝐶 + (1|𝐼𝐷). Here, ‘NumDF’ denotes the numerator
degrees of freedom, and ‘DenDF’ denotes the denominator degrees of freedom.

ANOVA NumDF DenDF F value 𝑝-value LMEM Estimate Std. Err. 2.5% 97.5%

Intercept 4.478 0.082 4.317 4.640

OC 1 46 252 637.861 *** OC −1.217 0.091 −1.395 −1.039

Model 3 46 252 356.449 *** Model 2 0.588 0.091 0.410 0.767
Model 3 0.250 0.091 0.072 0.428
Model 4 0.712 0.091 0.534 0.890

Preproc. 3 46 252 221.364 *** RIG+GS −0.010 0.091 −0.188 0.169
AFF+GS −0.752 0.091 −0.930 −0.574
Fs+FSL −1.152 0.091 −1.330 −0.974

OC: 3 46 252 53.303 *** OC:Model 2 1.096 0.129 0.844 1.348
Model OC:Model 3 0.095 0.129 −0.157 0.347

OC:Model 4 −0.280 0.129 −0.532 −0.028

OC: 3 46 252 93.765 *** OC:RIG+GS 0.077 0.129 −0.175 0.329
Preproc. OC:AFF+GS 0.804 0.129 0.552 1.056

OC:Fs+FSL 1.171 0.129 0.919 1.423

Model: 9 46 252 12.161 *** Model 2:RIG+GS −0.153 0.129 −0.405 0.099
Preproc. Model 3:RIG+GS 0.543 0.129 0.291 0.795

Model 4:RIG+GS −0.687 0.129 −0.939 −0.435
Model 2:AFF+GS 0.010 0.129 −0.242 0.262
Model 3:AFF+GS −0.047 0.129 −0.299 0.205
Model 4:AFF+GS −0.789 0.129 −1.041 −0.537
Model 2:Fs+FSL 0.628 0.129 0.376 0.880
Model 3:Fs+FSL 0.207 0.129 −0.045 0.459
Model 4:Fs+FSL −0.410 0.129 −0.662 −0.158

OC: 9 46 252 12.981 *** OC:Model 2:RIG+GS −0.113 0.182 −0.470 0.243
Model: OC:Model 3:RIG+GS −0.513 0.182 −0.869 −0.156
Preproc. OC:Model 4:RIG+GS 0.634 0.182 0.277 0.990

OC:Model 2:AFF+GS −0.796 0.182 −1.152 −0.439
OC:Model 3:AFF+GS −0.096 0.182 −0.453 0.260
OC:Model 4:AFF+GS 0.491 0.182 0.134 0.847
OC:Model 2:Fs+FSL −1.052 0.182 −1.408 −0.695
OC:Model 3:Fs+FSL −0.410 0.182 −0.766 −0.053
OC:Model 4:Fs+FSL 0.285 0.182 −0.072 0.641

Random effects Variance SD

Subject ID (Intercept) 3.937 1.984
Residual 6.174 2.485
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Table 9
Results of ANOVA and LMEM tests on UK Biobank dataset preprocessed with new preprocessing procedure with absolute error as response
variable, and model architecture, offset correction (OC) and preprocessing procedure as fixed factor: 𝐴𝑏𝑠 𝐸𝑟𝑟𝑜𝑟 = 𝑂𝐶 +𝑀𝑜𝑑𝑒𝑙+𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 +
𝑂𝐶 ∗ 𝑀𝑜𝑑𝑒𝑙+𝑂𝐶 ∗ 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔+𝑀𝑜𝑑𝑒𝑙 ∗ 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔+𝑀𝑜𝑑𝑒𝑙 ∗ 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ∗ 𝑂𝐶 +(1|𝐼𝐷). Here, ‘NumDF’ denotes the numerator degrees
of freedom, and ‘DenDF’ denotes the denominator degrees of freedom.

ANOVA NumDF DenDF F value 𝑝-value LMEM Estimate Std. Err. 2.5% 97.5%

Intercept 9.228 0.107 9.019 9.436

OC 1 46 252 20 035.70 *** OC −5.588 0.129 −5.840 −5.335

Model 3 46 252 2514.49 *** Model 2 3.681 0.129 3.428 3.933
Model 3 −0.694 0.129 −0.947 −0.442
Model 4 −1.852 0.129 −2.104 −1.599

Preproc 3 46 252 3513.01 *** RIG+GS 1.295 0.129 1.043 1.548
AFF+GS −4.574 0.129 −4.826 −4.321
.Fs+FSL −5.003 0.129 −5.256 −4.751

OC: 3 46 252 946.12 *** OC:Model 2 −1.737 0.182 −2.094 −1.380
Model OC:Model 3 0.648 0.182 0.291 1.005

OC:Model 4 2.513 0.182 2.156 2.870

OC: 3 46 252 3126.95 *** OC:RIG+GS −1.227 0.182 −1.585 −0.870
Preproc OC:AFF+GS 4.648 0.182 4.291 5.005

OC:Fs+FSL 5.027 0.182 4.670 5.384

Model: 9 46 252 77.89 *** Model 2:RIG+GS 3.996 0.182 3.639 4.354
Preproc Model 3:RIG+GS 4.631 0.182 4.274 4.988

Model 4:RIG+GS 3.134 0.182 2.777 3.491
Model 2:AFF+GS 1.466 0.182 1.109 1.823
Model 3:AFF+GS 3.978 0.182 3.621 4.335
Model 4:AFF+GS 1.632 0.182 1.275 1.989
Model 2:Fs+FSL 0.979 0.182 0.622 1.336
Model 3:Fs+FSL 0.920 0.182 0.563 1.277
Model 4:Fs+FSL 1.456 0.182 1.099 1.813

OC: 9 46 252 71.25 *** OC:Model 2:RIG+GS −4.394 0.258 −4.899 −3.889
Model: OC:Model 3:RIG+GS −4.410 0.258 −4.915 −3.905
Preproc OC:Model 4:RIG+GS −2.594 0.258 −3.099 −2.090

OC:Model 2:AFF+GS −2.443 0.258 −2.948 −1.938
OC:Model 3:AFF+GS −3.835 0.258 −4.340 −3.330
OC:Model 4:AFF+GS −1.933 0.258 −2.438 −1.428
OC:Model 2:Fs+FSL −0.686 0.258 −1.191 −0.181
OC:Model 3:Fs+FSL −0.787 0.258 −1.292 −0.282
OC:Model 4:Fs+FSL −1.951 0.258 −2.456 −1.446

Random effects Variance SD

Subject ID (Intercept) 4.577 2.139
Residual 12.396 3.521
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